Autumn 03 | Flash: Functional Audio

Leerdoelen

· To be acquainted with the use of Drag and Drop .

· To be able to work with variables and properties.

· To equip events with sound
This lesson
In this lesson we are going to extend the interaction with sound. Sound that is connected to an action of the user, who gets auditive feedback in this way. We call this functional sound. In order to illustrate this we are going to make use of, among other things, the drag and drop function of Flash.
See the example:

[image: image1.wmf]
Lesson assignment
startDrag()

Create 3layers, call them “answer”, “draggers” and “target”. Select the last one and draw an object that you are going to drag it to. In my case a horizontal rectangle because of its clear left and right sides. Of course you can use anything you want.
Select the layer “answer”. Make a "Dynamic Text" field and give the name "answer1". This is where the feedback of your choice will be. Cut up the various parts of your drawing and make each part a separate Movie clip (use guides if necessary).
The Movie clip of the left side is here calle "left_mc" and its instance "mcLeft". Repeat this for all other parts.
Select the "draggers" layer and use the text tool to write “left”. Then turn it into a Movie clip by pressing F8. Call it “McDragLeft”. After you have done this, you double-click the instance of McDragLeft, so that you enter the movie clip. Here you select the text and turn it into a button by means of F8. Call the button “butDragLeft”.
After it has become a button, you double-click the button, so that you enter the button. Here you see 4 frames, up,over,down and hit. Make sure that the text is in all four frames (click F6 four times). Then create a new layer in the button. In this layer you turn the hitFrame into a keyframe (select frame and click F6). After this you draw a box over the text. Don’t worry, the box will be invisible lateron .

Go back to the root and click "mcDragLeft", open the Actions screen and enter the following code:
 on (press){this.startDrag();}

 on (release){stopDrag();

 if (this.hitTest(_root.mcLeft)){trace("hit!");}}

hitTest()

HitTest is a command that checks whether the one movie clip hits the other movie clip. You can also use this command while you are dragging. You can avoid dragging over something else in this way. Now you want to test if the movie clip your are dragging hits the target movie clip. If this is the case, you have successful. If not, you have failed. Within the brackets of hitTest() you write the instance name of the movie clip of which you want to if it hits it. For hitTest you write the instance name of the movie clip you are dragging.

this

Next to referring to a movie clip by its instance name you can simply say that you do not mean another movie clip but the movie clip itself. This is only possible if your script is located in the movie clip. Otherwise you would not know which movie clip is the movie clip itself.
Next to this there is also parent. If this is in a movie clip, that movie clip will be the parent. This is, therefore, called the child of parent. You can compare it to a family tree.
These terms come from object-oriented programming. It is useful to use them because this will avoid mistakes in naming and it allows you to solve things in a more flexible way.
continuation
Expand this version by activating the text field. In order to do so you must replace the trace in the above script in order to name a variable. This variable can see to it that the text field gets its contents on the root. I have not explained this, but use last year’s lesson or Google to solve this. Also see to it that you get an error message if you drag with the right-hand mouse button
Variables and propertions
Now you can drag with these two movie clips, but normally speaking you will have to perfect your interaction a llittle more. For instance, by remembering where the object comes from and when it next to the box, or, if things are wrong, that you should send the movie clip back to its original position. To this effect you must remember where the movie clip is from and know how you can give it a position. Remembering means using a variable. The position is a property of the movie clip.
Properties are characteristics of a symbol. Their values can be determined in advance or by means of ActionScript. In ActionScript all properties begin with an underscore. In Flash you cannot say “give me me the position”, but you can ask for x and y co-ordinates. Logically these two reflect the position. This is done as follows:
 movie clip._x

 movie clip._y

Instead of

Instead of 'movie clip' you enter the instance name of the movie clip of which you want to know the position. In order to keep this information, you place it in a variable, so that you can use it again at a later point.
 vlinksX = movie clip._x

 vlinksY = movie clip._y

You want to keep the location as soon as the user starts dragging. As soon as the user lets go in the wrong place, you can use this location again.
 movie clip._x = vLeftX

 movie clip._y = vleftY

This takes the movie clip back to its original position. All this gives the following total script: :

 on (press){

 this.startDrag();

 vleftX = this._x;

 vleftY = this._y;

 }

 on (release){

 stopDrag();

 if (this.hitTest(_root.mcTarget)){

 trace("hit!");

 } else {

 this._x = vLeftX;

 this._y = vLeftY;

 }

 }

Now it says this because in your script you refer to the movie clip itself. You want to know the script position of the movie clip itself..

Sound
In order to give more than just visual feedback on an action of the user, we can add sound. Flash can deal with sound in two different ways:
· Streaming sound (comparable to streaming video)

· Event sound (triggered by an action of the user)

For functional sound we use Event sound.
By means of File > Import > Import to Library... we load the sounds files into the Library. If we then click the left-hand mouse button on an audio symbol, we can create a Linkage Identifier. This is necessary because in this way we can address the sounds from ActionScript.

[image: image2.png]Linkage Properties

Identier: | oehidl

45 2.0 dass:

ActionScript

First we make a sound object and link it to the sound in the Library.
 goedsound = new Sound();

 goedsound.attachSound("sound1");

Then we can use it in e.g. a mouseEvent.
 knop.onPress = function() {

 downsound.start(0, 50);

 };

 knop.onRelease = function() {

 stopAllSounds();

 }

In the function start() the 0 stands for offset (sound begins at 0 sec. at the beginning), and 50 stands for the number of loops. These additions are optional.

See how you link sounds to event by using the Sound Behaviors in Flash. Windows > Behaviors. + > Sound > Load Sound from Library.

Streaming Sound

When you want an mp3 file to stream, you must make sure that the file is in the same folder as your swf file. Next you make another Sound object. Now you fill this object at any time with the content and the streaming. E.g like this:
 muziek = new Sound();

 knop.onPress = function() {

 muziek.loadSound("liedje.mp3", true);

 };

Also have a look at Help (F1) in Flash for more possibilities.

Links

Some Flash development sites

· flash-creations.com

· flashkit.com

· ActionScript.org

· flashfocus.nl

· kassenaar.com

· Macromedia site

Author: Barend Hendriks
Season: Autumn
Lesson number: 03
Date: 14-09-2006
Type of lesson: MME

_1229698451.unknown

